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ABSTRACT

In JCP 267, 2014, J. Yao showed how to add a
single function call to an nth-order iterative
algebraic solver thereby raising its order of
convergence to 2n-1. Here we generalize the
scheme to arbitrarily high order, without extra
derivative evaluations; and we discuss the
efficiency of the schemes. For n=2 (Newton’s
method) and moderately large system-size M,
we find a computational speed several times
faster than Newton’s method.



Outline

Add a single function-evaluation to raise the order of
convergence (OoC) of a root-solver from n to 2n-1.

Efficiency and CPU time.
Multi-step method: raise OoC to s(n-1)+1.

— A “step” here is one new estimate of the root per iteration cycle;
e.g., Newton’s method is n=2, s=1.

Results:

— Relative efficiency cf. Newton as function of s and system-size M.
— Example: tri-diagonal Jacobian
— Example: Jacobian with a large condition-number

Discussion

L.L. LoDestro, APS/DPP, New Orleans, Oct. 27—31,
2014



Add a single function-evaluation to raise
the OoC from n to 2n-1*

* Begin with an iterative algebraic solver for f(x)=0.

* The motivating example---raising Halley’s method, n=3,
to 5t order---is presented on the following page.

 The demonstration for general n is similar but with the
original scheme cast in fixed-point iterative form.

*[Yao, JCP 267 (2014), 139--145]



‘u A1exyqJe Joj paziferauds
3q ued aroqe jooxd ayy ‘sanfeA uomnduny unof Ajuo shojdwd 31 19AIMOY :JUIZISAUOCD L3PL0-13fLf ST poyIaW 3y} I0JaIay]

(V)o=(V+mf ="/
183 (G) *bg pue () ‘bq woiy s39s Aises auQ
(9)o=0-v
pUP I3pJO JWES Y) JO B ¢ Pue 'y Jey3 SN [ |
(5) (o=@ +Mf-=(®0+™),f)¢-V)
Je SaALLIe 3uo (¢€) b7 woiy (1) by Sundengns Ag

) (°29)06-9)=(,9=,9)0 + (= V) (%) %T (V+M)[

$AW023q deWINS3 3A0qe 3y} ‘(¢ + *x) f jo uoisuedxa JojAe] ay} pue (1) 'bg woy 1ramoy *(,v)0 +9/ V(%) f
+(9+ M) [—=(v+%)/ sny i(¢) b woiy (¢+ ¥x)[— 03 [enba SI IS puey-JySLI Y3 Ul SWLI) RAIYY ISIY YJ Jo WnS Ay

(,v)0+ mﬁgiw ¥ N%xim £+ [ = (v 4]

surelqo auo uorsuedxa Jojfe] e woig
JX3U UMOUS S JUIZIAU0D

J3pI0 YNy SI dWAYIS 3A0qR A} TaAMOY (9 + ) S pue ‘() S ‘(%) f ‘(*x)f san[ea uonounj Inojy Ajuo sandwod suQ
*3[2£) uoneIa) JualInd A Jo uonajdwod 1oy v + tx = Hx 337 ‘Ajeury

(), f
(00,01 = 00 (01 + 42002 (W) ) s o=V

:da1s 351y 3y U1 PaureIqo 1ey) 03 JB[IWIS SI UOLIN|OS Y]

(©) 0= Nﬁg\m FVO0J+ 0 + (4]

SIAJ0S pue
(1) b3 03 (¢+ M)/ wId) B SPPe AUQ IUIBIAAUD JO SIIPIO I0W OM] UTES 0} [[BI UOHIUNJ IOW U0 $sn dajs IXau Ay

(2) (9o=@+m/

sanpdwi (1) *bg Suisn *x =x 18 (¢ + X) [ J0J S3LI3s 10]AB] © 1BY] 2I0N ‘S[[EI [PUONIUN] 321Y) Sasn d21s 2A0qe 3
f[duw (1) ‘b3 Sur (9 J SaLI3s Jojfe], & Jeyy JON 'S[[ed [eUOLIUNJ 1Y qe ay]

(%),4
(w41 g0z (00) ) e e =

SE UAJILIM 3q UBD JI PUB 1001 3U0 AJU0 YOId am ‘SySIUEA W3] J1eIPenb Y UAYM [7] poylat s,U0IMAN JaA0I3I O]

0 3 ) VQ (),
A ), ()7 — va:x\,ﬂtx _ —=9

se passaldxa Aidxa ale $1001 0M) 3y} pue

(1 0= N%xim 0K, J+(%)f

(0# ,4 Sununsse) uonenba 3y} SIAJ0S UQ J001 A3 J0J LIS Y3y Y3 3q *x 197 *[¢] poyraw s L3l
UMOUY-[[9M Y3 UM € = U 3SBD Y3 J0J 1Y Inpadoid 3y} JLIISUOWIP IM PUe PoYIdW SIy) yim sdajs om) e a1ay]

L.L. LoDestro, APS/DPP, New Orleans, Oct. 27—31, 2014



Efficiency of function-evaluations and CPU cost

* Higher-order methods require more f-evaluations
= often not more computationally efficient:

* &, the error-reduction per function-evaluation, was
introduced by early authors to analyze efficiency.



Efficiency and CPU cost, cont.

« £ =error-reduction exponent after k iterations: £ = nk.

* N, =total no. of f-evaluations to reach a given &:
N.=kN,, where N, is no. of f-evaluations per iteration.

* Then £=nMNTN.1 = (n/NYNT) 50 that £, = nt/M-1,

* Cepyr Cepys = cOmputational cost to realize €, evaluate f:
— Cepu — CopurIn €/ (&4~ 1)



Multi-step method: raise OoC to s(n-1)+1

III. GENERALIZATION OF THE ACCELERATION SCHEME TO FIXED-POINT ITERATIVE
METHODS

Acceleration of n > 2 Taylor-series-based root-solvers, while achieving convergence of order 2n — 1 with n + 1
function-evaluations, has the drawback in common with the original solver that roots of polynomials of degree n — 1
must be solved for the intermediate and final step-sizes; and the appropriate roots from these solves must be identified.
Here we circumvent these complications by developing the acceleration method for fixed-point iteration: One solves
for f(x) = 0 by iterating upon x; according to

Tpy1 = Tk + O (2)

with o, = 0(fx, fl, fi,--.), where fi, = f(xr), fi = f'(xr), fi = ["(x1), etc. Without loss of generality, 0 can be
written in the form

f

§ = 7?(1+g)7 3)

with g = g(f, f', f",...) and gr. = g(fr, f1, f',-..). The iteration scheme is said to be n'"-order convergent if
S ~ 0(6). (4)
The Taylor expansion of f,,1 then becomes (employing the alternate notation f() for the i*" derivative of f where

convenient):
oo i 00 (i) N
_ D 0y, _ Ix —fx i

fk+1*;f;€ i fkgk+i;T< I (L+gx)" (5)

In the second equality, note that figg, the remainder of the two lowest-order terms, can be at most of second order
(since fr41 ~ O(8})), which then implies fi ~ 5, which in turn restricts g to at most first order. The series is in
the form of a function, A, that is analyzed in the Appendix. It is shown there what conditions g must satisfy in order
that fri1 ~ O(07).

We now apply our acceleration approach to this fixed-point iteration. The functions f,g, and ¢ will remain the
same. To distinguish the modified iterates, we will use use tilde’s, i.e., o = 6()?;@., fkl7fk// c)s fo = f(zr), fk, =

N 5 ~ o~ o~
F'(@k)s g = 9(fis fro s fi - ), ete. We set

Tpg1 = Tp + Ap

with
.+ [ )
Ak:_fk~/f (1+g)
k
N ~ w 1oz
g =g9(fs+ e e o)
and

[T RO oY i—ffkqﬁzf’“ () 1+
i=0 : i! A
é(;.lzlioDestro APS/DPP,\)l/\IeEX\éIeraI%ans Oct. 27—31, 3
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@)

g(ASO7f/7f//7"')
5% = —(A% /1) x (14+5%)

Q
I

e
.gSi :g(A_Si7fl7fll7"‘)
0% = —(A%/f) x (1+5%)

7% = 4 65

Tk+1 = jssa (7)

giving for the Taylor expansion of fri1:

S ) (0571 —Se1) A4S X fO (—ASeY PR - g
fern=2_f =g A 1y (1+g%) =f— A% 4 p5 (8
=0 i=2

7! 7! I’
To proceed, we develop an iterative relation for the steps from the intermediate Taylor series, beginning with:

Jor = f = AS RS
Subtracting the series for f5 gives:
o= P = A5 4 A5 RS S
so that
PO = B RS (AS = AS) 0(F77L) ~ F5 O(f7Y) ~ o(FEFD=DFL)

where we have used Eq. (A7). Using this result in Eq. (8), we obtain the convergence rate:

frg1 ~ O(f5nm DY), (9)

having evaluated one derivative and s f-functions.

The error-reduction per function-evaluation of this scheme, assuming f’ costs about the same as f to evaluate, is
Er = (s(n—1)+ 1)/ (+s=1 Evaluations of £; at small s and n reveal a single maximum, £ = 1.495 at s = 2, n = 3,
i.e., at the first case analyzed in [1]—Halley’s scheme accelerated to 5"-order. For comparison, the original Halley’s
scheme, s =1, n = 3, has & = 1.442.

L.L. LoDestro, APS/DPP, New Orleans, Oct. 27—31, 2014
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Accelerated Newton scheme shows
continuous improvement with s

e Plotted are contours of
constant (E;(s,M)-1)/
(EA1,M)-1): the relative
efficiency of the s-step
scheme cf. Newton

— Improvement over
Newton is above a factor
of 3 for M above 40.

— d&/ds=0=sIns~M:
a good fit to the optimum
s at given system-size.

— Improvement continues |
as M — oo, 0 20 40 60 80 100

L.L. LoDestro, APS/DPP, New Orleans, Oct. 27—31, 2014 11



Example: tri-diagonal system

X, +%sin(x2) =1.0;

1.0;

I
w2
—

=
Re
| —
+
o
[\®]
+

I
w2
Y
=

—_
=
(O]
N—’
Il

1 . |
—sin(x, ;) + x, + —sin(x,,) = 1.0;
2 ( l—l) i 2 ( l+1)

%sin(xM_l) + x,, =10.

* We solve this system with n=2, s=3 and M=32.



tri-diagonal system, cont.

* Initial guess: x=1/2

0
* Residuals follow predicted L .
convergence rates--- g ° o
parabola (diamonds) and g 8
cubic (circles) for Newton P .
and accelerated Newton ;fl o
respectively.
-16 o) .
4

Number Iterations



Example: ill-conditioned Jacobian

* Solution is x; = 1/i.
 We solve with n=2, s=3 and M=32.



ill-conditioned Jacobian, cont.

Initial guess: x= x.*(1+.5 r))

Both the Newton and ac-
celerated Newton schemes
achieve only linear con-
vergence due to finite
accuracy of the Jacobian
matrix decomposition.

Accelerated scheme
nevertheless still provides a
significant advantage.

o & W

. Residue Logorithm

[—
o

-15

1

o o
2 3 4 5 6.7 8 9 10 11 12

Number Iterations



Summary/Discussion

 We have extended [Yao, JCP 2014 (s=2)] to an arbitrary number of steps s per
iteration and estimated the error-reduction per function-evaluation, é’f, and
computational cost, C.p,, of the methods.

Optimum s occursatsins~ M
significant improvement in C;, for large M

* Even when the Jacobian of an originally 2"-order method is ill-conditioned
and the theoretical OoC is not achieved, the new scheme can reduce the
original Cc,, by a factor of two.



